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Control of the metabolic flux

in a system with high enzyme concentrations and moiety-conserved cycles
The sum of the flux control coefficients can drop significantly below unity
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In a number of metabolic pathways enzyme concentrations are comparable to those of substrates.
Recently it has been shown that many statements of the ‘classical’ metabolic control theory are
violated if such a system contains a moiety-conserved cycle. For arbitrary pathways we have found:
(a) the equation connecting coefficients Cg, (obtained by varying the E; concentration) and ord
(obtained by varying the k{*"), and (b) modified summation equations. The sum of the enzyme control
cocfficients (equal to unity under the ‘classical’ theory) appears always to be below unity in the
systems considered. The relationships revealed were illustrated by a numerical example where the
sum of coefficients Cf, reached negative values. A method for experimental measurements of the

above coefficients is proposed.

A quantitative approach to the study of cellular metab-
olism control is now widely accepted (for review see, for ex-
ample, [1 —3]). One of its important branches, the metabolic
control theory, was first formulated in [4—7]. In the frame-
work of this theory the contribution of the enzyme (E;) to the
control of the flux (J) can be characterized by the fractional
change 8J/J in the metabolic flux induced by the fractional
change OF;/E; in the enzyme concentration:
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where E; is the concentration of the ith enzyme. The dimen-
sionless coefficient, Cf, is named the flux control coefficient
of the concentration of enzyme i. It corresponds to the logic
of the experiment, in which enzyme concentrations are varied
in turn and the changes in the steady-state fluxes obtained are
compared in order to estimate the contributions of different
enzymes to the flux control. Similarly metabolite concen-
tration control coefficients are defined [5—7].

An important assumption of the ‘classical’ metabolic con-
trol theory is that each reaction rate is proportional to the
corresponding enzyme concentration [4 —7]. Furthermore, in
the ‘classical’ theory, as well as in common enzyme kinetics,
free substrate (metabolite) concentrations are identified by
their total concentrations. In other words, it is supposed that,
due to low enzyme concentrations, the concentrations of en-
zyme-bound metabolites can be neglected as compared to their
free concentrations in solution.

According to these suppositions any steady-state flux is
a homogeneous first-order function of the enzyme con-
centrations, i.e. if these concentrations change by factor «
(E; —» « E}), all fluxes in the system will change by factor a
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too (J — a J). In view of Euler’s theorem this results in the
remarkable property for the sum of the control coefficients:
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This equation was named ‘the summation theorem’ [4].

For metabolic pathways with branches and cycles ad-
ditional (linear relative to C§) summation relations exist (one
for every branching point or cycle). In these additional re-
lations the coefficients Cf are multiplied by ‘weighting’
factors. The ‘weighting’ factors are expressed through the
branching point fluxes (see [8 —10]).

Cellular metabolic systems exist in which enzyme concen-
trations are comparable or even significantly exceed substrate
concentrations. Glycolysis may serve as an example [11—
13]. The present paper deals with exactly such systems. Some
researchers have already noticed that, in such systems, certain
definitions and theorems of the metabolic control analysis
may be not valid [14, 15]. Reder has shown [16] that this is
the case only for a system with a moiety-conserved cycle. In
particular, the sum (2) of the enzyme control coefficients may
be not equal to unity. This effect was reported by Ottaway
[17, 18] during numerical modeling of the tricarboxylic acid
cycle. Fell and Sauro [19] studied how the binding of the
moiety-conserved cycle metabolites with the enzyme affected
the control coefficients. However, their elegant equation, con-
necting true values of control coefficients and thosc deter-
mined without considering the substrate binding effect, is valid
only for a pathway with a single enzyme present at a high
concentration. Moreover, this enzyme has to catalyze the irre-
versible Michaelis-Menten reaction. It is also suggested that
other moiety-conserved cycle metabolites (except for sub-
strate) cannot bind to this enzyme, i.e. their effector action on
this reaction is ruled out. In the present work we abandon
these restrictions and consider general metabolic pathways
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with an arbitrary geometry of connections and any number
of conserved sums of intermediates. We also do not impose
any himitations on the kinetics or number of enzymes present
at high concentrations. For these systems, we derive modified
summation theorems for flux and concentration control coef-
ficients.

Theoretical background

We consider an arbitrary metabolic system including m
metabolites (X, ..., X,,), whose concentrations (X4, ..., X,)
are completely determined by n enzyme reactions of the sys-
tem. The chemical equation of the jth reaction is written as:
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where X; 1s the chemical symbol of the ith metabolite, o;; and
Bi; are the numbers of X; molecules in the left and right-hand
sides of the chemical equation, respectively. It is convenient
to associate with the reaction scheme the stoichiometric matrix
I’ of m rows and » columns constructed as follows:
i = By — %y,

where y;; is the stoichiometric coefficient of X; in the jth
reaction, y; < 0, if X is the substrate, and y; > 0, if X, is the
product of the reaction.

We will denote concentrations of metabolite X;, free or
bound to enzyme, as X; and X?, respectively. Total concen-
trations X} are cqual to (X; + XP). Only the values X; are
variables in the ‘classical’ control theory, disregarding the X?
values. We assume that any reaction rate (v;) can be written
as:

Uj = k;al : Ej' wj(X)a (3)

where w; is the function of free metabolite concentrations:
X = Xy, ..., X;p. Such a representation of the rate equation
implies the absence of direct enzyme — enzyme interactions in
the system [20, 21]. Also, the parameter k$*' is assumed to vary
independently of the concentration E; and parameters in ;.
It is noteworthy that the parameter, k$*, so defined, may
correspond to none of the elementary steps, i.¢. it may have a
formal (not physical) character. Variation in the parameter
k$'isequivalent to the same relative change in all the constants
of the elementary steps of the jth reaction.

As known from the enzyme kinetics, functions w; in the
rate equations are determined using the steady-state assump-
tion [22], i.e. in the approximation of steady state over all

enzyme-containing compounds. The concentrations ([X;E,])

of enzyme-bound forms of metabolite X; determined accord-
ing to this assumption can be represented as:
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where wy; 1s the saturation function of the enzyme, E,, by
metabolite X;. We emphasize especially the major property of
Eqn (4): the steady-state concentrations of bound intermedi-
ates X3 are linear homogencous functions of concentrations
E, and do not depend on parameters k§*.
If the rank (r) of the stoichiometric matrix I' is less than
the number of metabolites m, the concentrations, X; and X%,
are connected by the m-r linear conservation relationships:

m
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where T; is the conserved sum of different forms of the jth
chemical moiety, u; is the stoichiometric coefficient of metab-
olite X, in the ith moiety conserved sum (T7). T;, as well as E;
and k§*, are independent parameters of the system. The T;
values can be represented as: T; = TT 4+ TP, where T¥ and
T? are the sums of concentrations of free and enzyme-bound
metabolites, correspondingly (note that 7t and T? are vari-
ables rather than parameters of the system).
The steady-state system is determined by the equations:

n
2y v(X)=0, i=1...m, (6)
i=1
which should be considered together with Eqns (4) and (5).
It is evident that in the steady state of the system Eqns (3)
and (4) become exact rather than approximate. Any metabolic
flux J in the steady state can be represented as:

J= Zﬁz 0 (Xiss. N
i=1
where f; are constant coefficients, at least one of them is not
equal to zero. It is clear from Eqns (4—6) that the steady-
state flux is the function of system parameters E;, k{*, T;.

In the ‘classical’ theory, control coefficients Cﬁi can be
found not only through a change in concentration E;, but by
varying any parameter (for example, k§*) which affects rate
v; as well. However, in our case, the coefficients thus obtained
do not coincide with Cél., since at varying k{* or E; the concen-
trations of metabolites bound to E; change differently. It is
noteworthy that an analogous situation also arises in the case
of violation of the postulate of the ‘classical’ theory on linear
dependence of rate v; on E; [3, 20, 21]. The coefficients
obtained by changing k¢ are denoted as Cj, [20]:
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Further we will refer to C,, as the flux control coefficients with
respect to the rate (or specific enzyme activity) and Cg, as
those with respect to the enzyme concentration [19, 20]. The
‘classical’ summation theorems prove to be valid only for
coefficients C, (see [9] and Resuits), but not for Cf,.
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RESULTS

Summation theorems for flux
and concentration control coefficients

Let us assume that as a result of a perturbation in paramet-
ers the system comes to a new steady state with the reaction
rates v; shifted by 4v; and free metabolite concentrations X’
unchanged. Obviously, dv; have to satisfy Eqn (6). For any
such Av; perturbations 4E; and AT, determining the new
steady state are defined by the following equations (see Eqns
3-5):

v; + 4o =k (E; + 4E ) w; (X)
)
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AT; = Z |:ﬂij : AE, YT (X)]
j=1 k=1
where X; and v; are the concentrations and rates in the initial
steady state. We present changes in the rates in the form:

Aoy =&+, (10)



where [ = [, .. ., I, is the vector defining the direction of the
shift of the steady state in the space of the reaction rates.
According to Eqns (6) and (10) the vector / components should
satisfy the following equations:

Z Vij *l
j=1

The perturbed steady state flux J appears to be the function
of £ and, according to Eqns (7) and (10), one can write:

=0, i=1,..,m.

(11)
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On the other hand, the derivative d In |J]/d¢ can be expressed
in terms of the system control coefficients:

(12)
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where RTi are the response coefficients of the flux J toward a
change in the conserved sums 7T;:
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The derivatives of the perturbed parameter values with respect
to ¢ can be found from Eqns (9) and (10):°
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where [T.E,] = Z uij - [X;E,] denotes the Ex-bound part of
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the sum 7. By sﬁ‘bstituting the latter relations in Eqn (13) and
equation the right-hand sides of Eqns (12) and (13), we finally
obtain the n-r summation relations for the flux control coef-
ficients Cf,:
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where vectors I = (IM,..,I"),v = 1,...,
independent solutions of Eqns (11).

Eqns (14) differ from the summation theorems of the
‘classical’ theory in additional items, including response coef-
ficients of flux J, toward a change in the value of 7. As is
obvious from the above proof, they appear because, which
variations occur in E;, the steady-state values of X remain
unchanged only with simultaneous variations in T, (due to
variations in the concentrations of metabolites bound to E;,
i.e. T}). However, if the new steady state with perturbed values
of v; + Av; and invariable values of X is realized due to
variation of kf* + 4k (but not E;), the X® values and,
consequently, the T; values also remain unchanged as is clear
from Eqn (4). Therefore, the ‘classical’ summation equations
will be valid for the coefficients Ci, [9, 10]:

Zc Zﬁ

A concrete form of Eqns (14) and (15) depends on the choice
of n-rlinearly independent vectors /"), For example, the vector

n-r are the linearly

., h-r.

(15)
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of steady-state reaction rates /; = v; can always be chosen as
one of the vectors /{”. By substituting it into Eqn (15) we
obtain the ‘classical’ summation theorem for CJ:

2C =

i=1

(16)

and by substituting /; = v; into Eqn (14) and taking into
account the obvious relation:

n
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we obtain for the sum of C, (compare with Eqn 2):
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For metabohc pathways W1th branchmg points or cycles,
the vectors, /), can be found using simple considerations
based on the graphic representation of the metabolic pathway.
For each branching point of the metabolic chain we will set
I; = 0 for the reactions preceding the branching point, /; =
+1 for all the reactions belonging to branch 1, and /; = —1
for all the reactions belonging to branch 2. The relationship
corresponding to this choice of /; in Eqns (14) takes the form:
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where J; and J, are the steady-state fluxes through branches
1 and 2, ie. J = J; +J,, TP*! and T%*? are the parts of
conserved sum T; bound to enzymes of branches 1 and 2,
respectively. At the same time the relation for Cj, correspond-
ing to this choice of /; coincides (see Eqn 15) with the common
branching point equation obtained in [8].

Using Eqns (9) and (10) one can also obtain the summation
relations for concentration control coefficients. Taking into
account that concentrations of free metabolites (Xs) do not
vary in a new steady state, i.e. d In Xs/d¢ = 0, and representing
this derivative by control and response coefficients (by
analogy with Eqn 13) one can obtain n-r summation relations
for the coefficients Cgs:
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By choosing the vector of steady-state rates v; as one of the
vectors, /!, we obtain for the sum of concentration control
coefficients:

b
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Similarly it is not difficult to show (by changing A{* but not
E;) that CJs satisfy usual summation relations:

Sap!

Taking into account that bound metabolite concentrations
(X?) vary by perturbation (9) of the steady state, one can see
that summation relations for total concentration (X%) control

(19)

—-0, v=1,..., nr (20)

. coefficients (C3) differ from Eqns (18). In the right-hand side
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of these relations,
instead of zero.

) occurs
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X3
Fig. 1. Model of metabolic pathway with two moiety-conserved cycles

used for numerical illustration. The dashed line with arrow indicates
the direction chosen as positive.

How to compare the coefficients C E, and C"i?

Of special interest is the question of how the control coef-
ficients with respect to enzyme concentration (Cg,) and specific
activity (C,,) are interrelated. In order to answer it, we alter
the concentration of any enzyme E; by 4E; and adjust k§*' so
that at the same X values the rate of the ith reaction (v;) does
not change. In the new steady state all the rates and free
concentrations remain unchanged if the perturbed parameter
values satisfy the following Eqns (21) (compare with Eqns 9):

v = (kf" + Ak - (E; + 4E) wi(X) (21)

m
4T, = Z (tj AE (X)), k=1,...,m-r.
j=1
Taking into consideration that after such a perturbation the
flux J does not vary, we can write:
dlnk§* &
T

dlnTk
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Expressing the derivatives in Eqn (22) by virtue of Eqn (21)
we finally obtain:

ct=ci- ¥ rp, I
k=1 Ti

, i=1,...,n (23)
Since free metabolite concentrations did not change either
(see Eqn 21), similar equations can be written for free concen-
tration control coefficients CE. Taking into consideration that
bound metabolite concentrations (XP) vary at perturbation in
E; one is readily convinced that in the right-hand side of the
corresponding equations for total concentration X% control
coefficients an additional term, [XsE;]/ X%, is present.

It follows from Eqn (23) that the control coefficients Cg,
coincide with cocfficients C,, for all the enzymes with low
concentrations as compared to metabolite concentrations. So,
for an arbitrary metabolic pathway the control coefficients
with respect to the enzyme concentration and enzyme activity
will differ only for the enzymes present at high concentrations
comparable with sums of intermediate concentrations.

NUMERICAL EXAMPLE

The above results are illustrated here by example of sys-
tems with one and two moiety-conserved cycles. The metabolic
pathway from Fig. 1 involves three enzymes (E, E; and E,),
a substrate (S), a product (P), two intermediates (X, and X,),
and two coenzymes (X3 and X,). This system includes
two moiety-conserved cycles: X;—-X;-5X3;-X; and

X, & ) X,
53# X ExX == ¥, £, .
10 3
EaXg 27T 5%,
9 \\ e
\
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E3XS \ E,XP
1
\
/
8 \ / 5
N 7/ L_.
S N - P
7 6
E3Xsy ‘_T X3 7> ExX3
E; £

Fig. 2. Elementary steps of model metabolic pathway. E, X, E,XP, etc.
are enzyme-substrate complexes. Numbers of steps correspond to
those in Table 1. The dashed line with arrow indicates the direction
chosen as positive.

X3—2X4—X;5. The former (Ty) involves free and bound forms
of intermediates X; and X, and coenzyme X5 (T, = X\ +
XY 4+ XY), the latter (T,) involves free and bound forms of
coenzymes X5 and X, (T, = X4 + XY).

Assume that the concentrations of all the three enzymes
are comparable with the metabolite concentrations. Since
functions x;; and v; have a rather complicated form (for two-
substrate reactions), our model system has been described at
the level of elementary steps of enzyme reactions to simplify
the calculation (see Fig.2). For two-substrate reactions,
catalyzed by enzymes E, and E,, the ordered mechanism is
accepted (for the definition, the coenzyme is assumed to bind
first).

The structure of this model system resembles the simplified
structure of the lower part of the glycolytic pathway, where
coenzymes NAD and NADH react in turn with glyceralde-
hyde-phosphate dehydrogenase and lactate dehydrogenase.
Therefore, the data on glycolytic enzyme and metabolite con-
centrations from [12] were used to choose initial values of
parameters. The kinetic constants of elementary stages, sub-
strate, product, and enzyme concentrations as well as con-
served sum values are given in Table 1 (part A).

The system of equations describing the steady state of all
the stages together with material balance conditions was
solved by the numerical method [23]. In order to calculate the
control {C%. and CJ) and response (R}) coefficients this sys-
tem of equations was differentiated in the vicinity of the calcu-
lated steady state relative to parameters E;, k§* and T, respec-
tively. The obtained systems of linear (with respect to the
desired coefficients) equations differed only in vectors of free
terms. These systems were solved by the matrix method.

The values of the control coefficients are shown in Table 2.
The sum of coefficients CJ, is equal to unity, as expected, while
the sum of coefficients Cg, is about 0.5. As is obvious from
Table 2, the latter sum, calculated by the direct method, co-
incides with that calculated by Eqn (17). As mentioned above,
a significant deviation of this sum from unity is explained,
first, by a large fraction of bound metabolite forms and, sec-
ondly, by high values of the coefficients of flux response
towards a change in conserved sum values (see Table 2). An
increase in the enzyme concentrations results in a further
decrease in the sum of control coefficients Cﬁi. Moreover,
under certain conditions some enzyme control coefficients
acquire negative valtues. Fig. 3 shows that Cg, becomes nega-



Table 1. Parameter values used in numerical examples. k.; and k_;
have the units s ' or M~ 1571,

Step A B
Example with Example with
two conserved sums one conserved sum

ki k_; ki k_;

1 0.5 23 100 200

2 5.8 0.01 2 0.001; 10

3 0.375 10 1000000 550000

4 0.01 6.6 111111 200

5 57 0.001 74000 0.01

6 26 0.1 500 5555.56

7 0.01 22 200 1600

8 0.1 12 3000 2000

9 9 0.1 2000 3000
10 28 0.05 550000 1000000
Concentration Value

uM

E, 200 1
E, 300 0.01
E; 1400 0.01
T, 990 3
T, 600 —
S 80 80
P 3700 3700

Table 2. Results of calculations for the model with two conserved sums.

Coefficient  Value Coefficient  Value
Rf, 0.2929 YT, 0.3636
RY, 0.5712 TST, 0.6333
al 0.1492 ct, 0.1196
Cy, 0.3891 Ct, 0.1851
al, 0.4618 ct, 0.2270
3 3

> Cl 1.0000 Y L 0.5137

i=1 i=1

{— Ry -TYT, — R, - TYT, 0.5137

tive with the increase in the concentration of E,. Similarly,
Ct, and Cg, become below zero when concentrations £, and
E5 increase by a factor of 2 or 2.5, respectively, as compared
to their initial values (data not shown).

The results proved to be more interesting when the total
concentrations of all the enzymes increase in the same pro-
portion: E;—»aF;, i = 1,2, 3. It is clear that in this case the
‘classical’ flux and concentration control coefficients [CE,
(app) according to the terminology of [19], bound metabolites
being neglected upon their calculation] do not change. The
behavior of the true control coefficients differs in principal.
Fig. 4 shows that when enzyme concentrations increase by a
factor of 4, not only do the coefficients Cf, and Cf, become
negative but so does the sum of Ci.. In other words, a further
increase in the concentrations of all the enzymes (by the same
factor) leads to a drop but not a rise of the flux. Similar
results were obtained for this model with other sets of kinetic
constants (data not shown), so the observed phenomcnon is
not a consequence of a4 poor choice of system parameters.

-0.4
0

£2/3
Fig. 3. Variation of the flux control coefficients with respect to enzyme
2 at varying concentrations of the enzyme. (———-) Flux control coef-
ficients with respect to the specific enzyme activity; ( ) flux con-
trol coefficients with respect to the cnzyme concentration. E3 is the
original enzyme concentration (see Table 1, part A).

1.0
0.8
0.6
0.4

0.2
0

-02

-0.4
0

Fig. 4. Variation of the flux control coefficients with respect to enzyme
concentration ( ) and their sum (—-—-) at varying enzyme concen-
trations. All enzymes increase or decreasc by the same factor .

)(3 - X, + E)

Fig.5. Model of metabolic pathway with one moiety-conserved cycle
used for numerical illustration. E; X is the enzyme-substratc complex
whose concentration is comparable with those of enzyme E; and
metabolites X;. Concentrations of enzymes E, and E; are much lower
than those of mctabolites. The dashed line with arrow indicates the
direction chosen as positive.

Fell and Sauro [19] analyzed the model with one moiety-
conserved cycle and one enzyme having a concentration com-
parable with metabolite concentrations. To check whether the
effect of changing the Cf, sign can proceed in the case of such
a simple system, we reduced the above model. For this purpose
we gave up the conservation of sum T, and the concentration
of coenzyme X, was accepted to be constant. Constant con-
centrations X, S and P were included in the apparent kinetic
constants of reactions 2 and 3, so that our system was trans-
formed to a simple three-step cycle with three variable metab-
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Table 3. Results of calculations for the model with one conserved sum,
For true control coefficients, the left value was obtained by numerical
procedures (differcnt in [19] and in this work), the right value was
obtained by formulae proposed in [19]. Coefficients Cg, (app) were
calculated as in [19] taking into account that elasticity ¢} was not
equal to 0 in our case.

Data from this work
with reaction 1

Parameter Data from [19]

practically reversible
irreversible
Xy 0.3689 0.3670 1.9982
X, 2.039 2.032 0.1920
X, 0.4379 0.4376 0.2979
EX 0.1542 0.1538 0.4997
&l 0.846 0.852 24.899
& 0 —~0.006 —24.399
&3 0.940 0.940 1.010
e} —0.667 —0.667 —0.636
&3 —0.305 —0.303 —2.606
&3 1.075 1.074 3.003
Cﬂl (app) 0.2142 0.2120 0.0314
Ci, (app)  0.4346 0.4356 0.7868
Ct, (app) 0.3513 0.3524 0.1818
3
Y Ci (app) 1.0001 1.0000 1.0000
i=1
Ci:l 0.2081 0.2078 0.2058 0.2056 —0.0381 0.0291
Ciz 0.4218 04215 04208 04226 0.7872 0.7307
Cﬁl 0.3410 0.3408 0.3416 0.3419 0.1796 0.1689
3
Z Cf 0.9709 0.9701 0.9682 0.97060 0.9287 0.9287
i=1
Cf;l 0.2381 0.2378 0.2356 0.2356 0.0324 0.1004
Cﬁz 0.4218 0.4215 0.4222 0.4226 0.7889 0.7307
C£3 0.3410 0.3408 0.3422 0.3419 0.1796 0.1689
3
Z Cil. 0.9999 1.0001 1.0000 1.0000 1.0000 1.0000

olite concentrations. Thus it became completely analogous to
the model system considered in [19] (Fig. 5). The only differ-
ence was that in our case reaction 1 could be reversible.

The total enzyme concentration E; and the conservation
total 7; were taken as in [19]. Then we chose the kinetic
constants and other parameters and, in order to obtain the
system identical to that in [19], we made k _, small enough to
keep reaction 1 practically irreversible (Table 1, part B, the
first value for k). As expected, our calculations completely
confirmed the results of [19] (see Table 3, left-hand and middle
columns).

However, increasing k., (Table 1, part B, the second
value) and thus making reaction 1 reversible, we ascertained
that the relations obtained in [19] were not true for this case
(Table-3, right-hand column). In particular, control coef-
ficient Cg, was found to be negative in the reduced system,
while it remained positive if calculated by the formula pro-
posed in [19]. Although the difference was only slight, it could
become significant at other values of the parameter. For ex-
ample, if £, increased by a factor of 10 and all kinetic con-
stants of reaction 1 decreased by the same factor (to hold V.,
and K, constant, see [19]). the true C%, value was —0.5654,

while it was equal to 0.0123 if calculated by the method of
[19].

DISCUSSION

In the present work we have considered metabolic systems
in which enzyme concentrations are comparable with those of
their substrates and products. When analysing such systems
we gave up one of the assumptions of the ‘classic’ metabolic
control theory according to which one can ignore bound
metabolite concentrations as compared to their free concen-
trations. Simultaneously we preserved another assumption
about the linear dependence of the reaction rates on the con-
centrations of the corresponding enzymes.

In case such systems lack moiety-conserved cycles all the
concepts of the ‘classical’ metabolic control analysis remain
valid. In this case coefficients Cg, determined by Eqn (1)
coincide with Cy, determined by Eqn (8) and with the control
cocfficients calculated without taking into account the
mentioned difference between free and total metabolite con-
centrations.

In the case where the systems under consideration contain
the moiety-conserved cycles, an increase in enzyme concen-
trations results in transition of some metabolite molecules
from the free state to the enzyme-bound one, and hence the
available pool of free metabolites decreases. Therefore the
control coefficients with respect to enzyme concentration Cf,
do not coincide with the control coefficients with respect to
enzyme activity CJ_ (except for the enzymes whose concen-
trations are low as compared to metabolite concentrations,
see Eqn 23).

Although the ‘classical’ summation relations (15) hold
good for coefficients CJ,, the connectivity relations (see [4, 9])
have to be modified taking into account the corrections due
to the binding of the moiety-conserved cycle metabolites to
enzymes. As a result, coefficients C;, depend not only on the
elasticity coefficients as in the ‘classical’ case, but also on the
derivatives of functions x;; (X) with respect to free metabolite
concentrations. So coefficients Cg, and Cj, differ not only
from each other but from control coefficients Cg, (app) and
CJ, (app) calculated in the framework of the ‘classical’ theory.
In the general case of an arbitrary metabolic system one can-
not obtain equations for coefficients Cg, and C;, via Cf, (app)
and Cj, (app) in a simple and visible form by analogy with
equations in [19]. However, for an arbitrary system we can
compare coefficients Cf, and Cj, (see Eqn 23). Usually fluxes
increase with the increase in conserved sum 7}, i.e. R’Tk >0,
so according to Eqn (23) the control coefficient with respect
to enzyme concentration C¥, is less than the control coefficient
with respect to enzyme activity CJ,.

We obtained the modified summation relations for the flux
(Cg,) and concentration (CE®) control coefficients. As obvious
from Eqn (17), the difference between the sum of the flux
control coefficients and unity becomes significant, if at least
one of the conserved sums (7)) limits the flux (i.e. R} is about
1) and the sums of concentrations of bound (7"°) and free (T*)
metabolites are comparable in magnitude. Such a case was
demonstrated in the numerical example.

The above example shows that the flux control coefficients
and even their sum can take negative values in case their
‘classical’ analogs are positive. This phenomenon does not
contradict the above theoretical results. Indeed, it is evident
from Eqgn (17) that the sum of control coefficients is equal to
unity minus an additional term (absent in the ‘classical’ the-



ory). This term is positive if coefficients R, are positive and,
generally speaking, it can exceed unity. On the contrary, the
equations obtained in [19] permit no negative values for the
sum as well as for individual control coefficients, if their
‘classical” analogs [Cf, (app)] and coefficients R}, (app) are
positive.

It should be noted that the control coefficient can change
its sign for the simpler system with a single moiety-conserved
cycle considered in [19], if the enzyme in a high concentration
catalyzes a reversible reaction (se¢ Table 3). A negative value
of the control coefficient appears to be due to the enzyme
binding not only with its substrate but also with the product.
This product is in turn the substrate for the next moiety-
conserved cycle reaction. In the case where this reaction sig-
nificantly contributes to the control, the lowering of its free
substrate concentration results in a flux decrease. Thus, an
excess of the enzyme serves as a metabolite-sequestering agent.
The possibility that the enzyme could play such a role was
discussed by Sols and Marco [11]. By modeling the
tricarboxylic acid cycle at high enzyme concentrations the
negative flux control coefficients were found and the sum
of the control coefficients appeared to be below unity. This
phenomenon was named as the “Sols-Marco effect’ [17].

Fell and Sauro [19] concluded that the theorems of meta-
bolic control analysis are less affected by the existence of
enzyme concentrations comparable to metabolite concen-
trations than some authors have implied. However, their cal-
culations refer to the particular case and give no grounds to
draw such a strong conclusion. Indeed, the above examples
suggest that a significant violation of the ‘classical’ summation
theorem can occur in the systems modeling physiological situ-
ations.

The enzyme control coefficients can be determined exper-
imentally. Methods of titration by specific inhibitors, for ex-
ample, may be used for this purpose [24]. Affecting the system
by a purely non-competative inhibitor [22] of enzyme £;, which
changes k§* only (i.e. ¥7*), we can determine Cj. Using an
irreversible inhibitor with a very high affinity to the enzyme,
which replaces substrates (products) in the active site, we find
C%, (an example of such inhibitors is carboxyatractyloside, a
specific irreversible inhibitor of adenine nucleotide translocase
of the inner mitochondrial membrane [25]). In the reconsti-
tuted system coefficients Cf, can be determined by directly
varying the concentration of E;. The response coefficients
R}, can also be measured by adding extra T} or by-trapping
the metabolites of the moiety-conserved cycle. If any of the
control coefficients (CZ, or C;) cannot be determined experi-
mentally, but the enzyme-bound parts of T; are known, the
control coefficient can be calculated using Eqn (23). On the
other hand, when the control and response coefficients can be
measured in a system with a single moiety-conserved cycle,
Eqns (17) and (23) allow one to estimate enzyme-bound frac-
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tion of 7. It seems attractive to demonstrate directly the effects
of high enzyme concentrations in experimental studies.
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